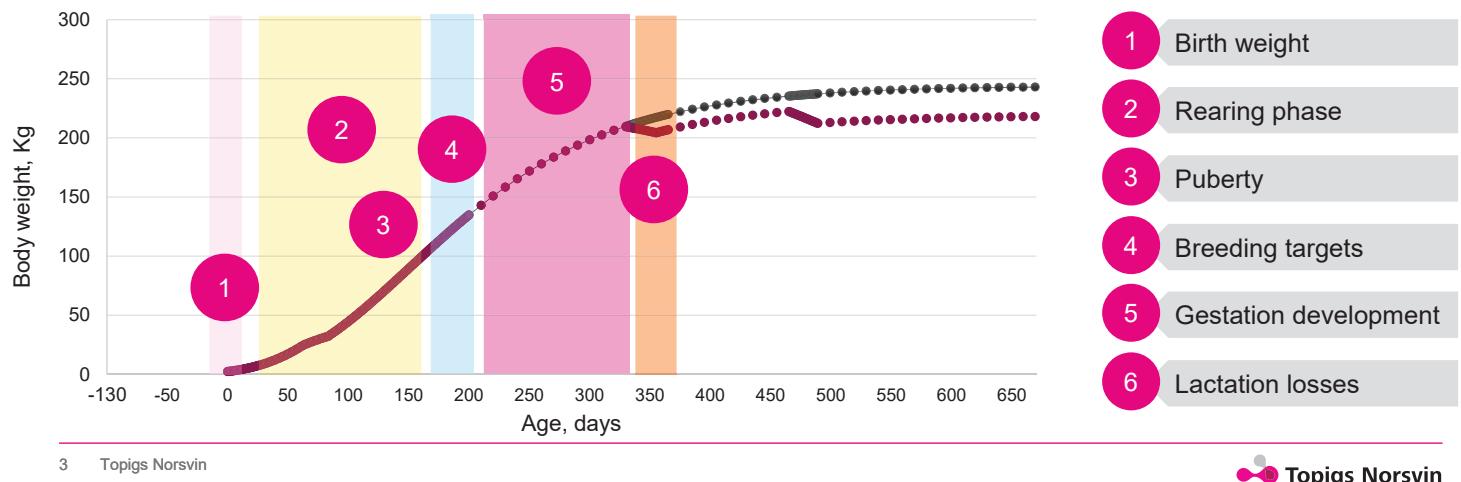

Rearing gilts for proper development

Julia Linck Moroni | Banff Pork Seminar 2026

 Topigs Norsvin

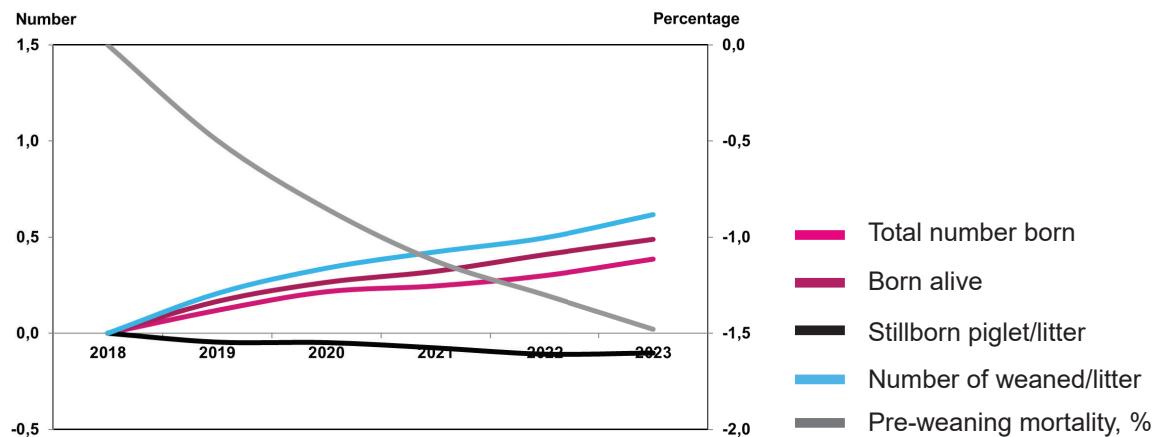

Introduction

Gilt development is a long-term commitment that encompasses **structural soundness**, the ability to support the litter during gestation and **lactation**, and the capacity to rebreed after weaning.

Introduction

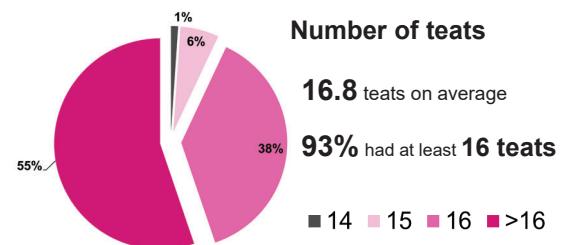
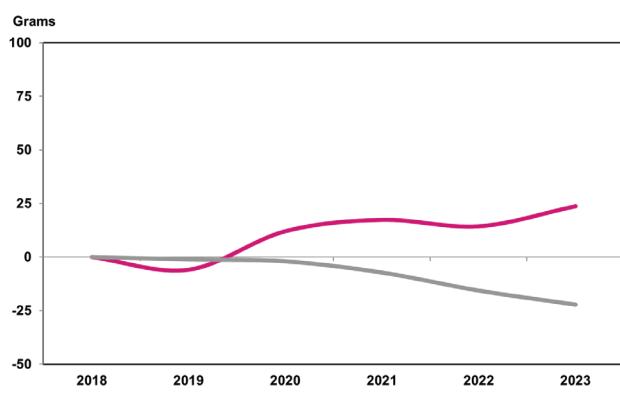
Gilt development is a long-term commitment that encompasses **structural soundness**, the **ability to support the litter during gestation and lactation**, and the **capacity to rebreed after weaning**.

3 Topigs Norsvin


 Topigs Norsvin

The genetic engine

 Topigs Norsvin



The genetic engine

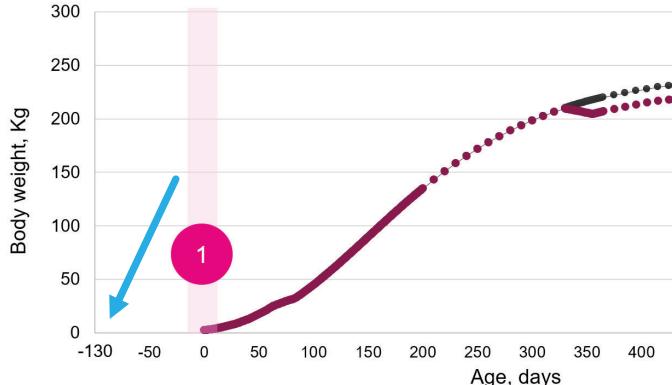
Sow farm productivity is closely linked to the number of **piglets weaned per litter**, the number of non-productive days, and the longevity of breeding females within the herd.

The genetic engine

Sow farm productivity is closely linked to the number of **piglets weaned per litter**, the number of non-productive days, and the longevity of breeding females within the herd.

The genetic engine

In practice


What does this mean?

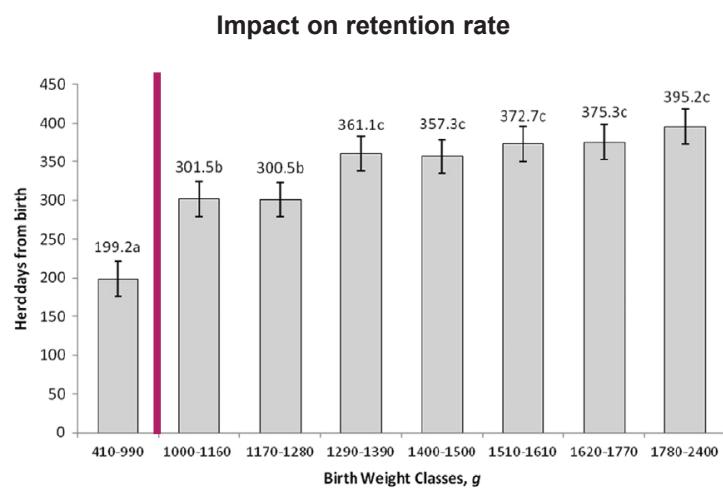
- Higher parity 1 performance
- Higher birth weight and higher survivability
- More piglets weaned per litter
- More pressure on the sow and on milk production

Gilt development is a critical aspect for successful gilt integration, maintaining a stable parity structure, and optimizing herd productivity and efficiency.

Birth weight

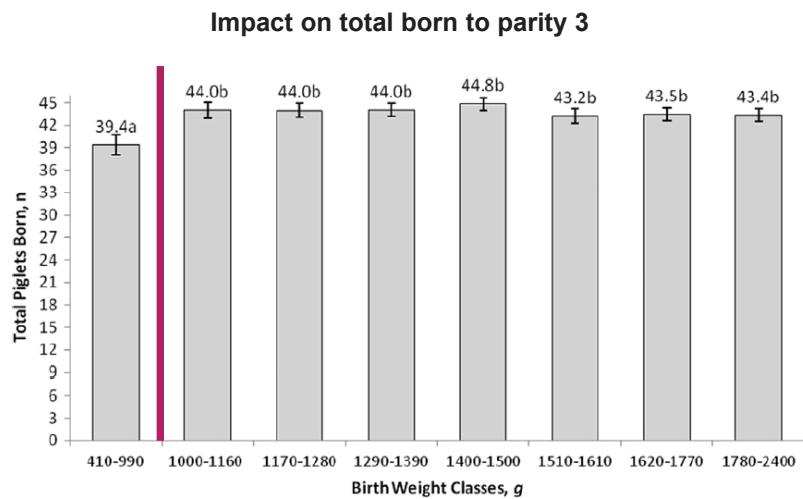
Birth weight and reproductive efficiency

Birth weight is also influenced by the management of the sow


- Low birth weight gilts are a risk category
- Lower phenotypic survival
- Reduced average weight gain throughout all stages of production
- At risk of insufficient colostrum ingestion

Minimum colostrum intake for future reproduction

Target: 250 grams of colostrum


Birth weight and reproductive efficiency

- The number of days a gilt remains in the herd is dependent on its birth weight

Birth weight and reproductive efficiency

- Gilts with a birth weight higher than 1kg exhibit superior lifetime performance (total born across three parities)



Rearing phase

Rearing phase

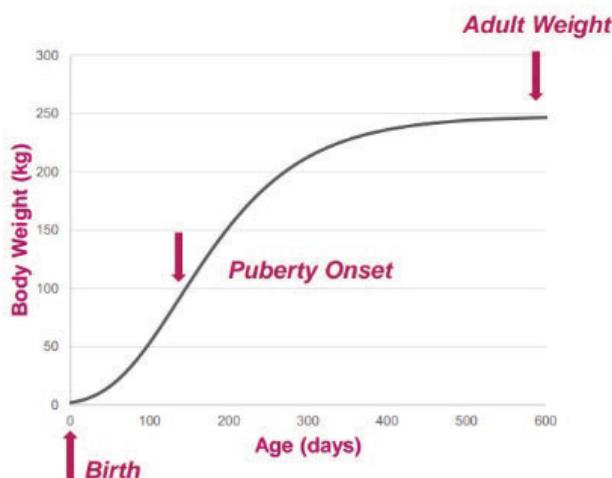
Body weight development and management

Growth performance

60 grams higher daily gain and 0.04 improvement in FCR over 5 years

13 Topigs Norsvin

Steady growth and development to promote longevity


- Support life daily gain > 650 grams per day
- < 550g/day: impaired reproductive performance
- Continuous monitoring and adjustment of feeding strategies are essential
- Ca and P are crucial minerals for bone development and claw quality

Patterson & Foxcroft, 2019 Topigs Norsvin

Rearing phase

Puberty stimulation and identification

JOURNAL ARTICLE

60 Whole genome prediction of the onset of puberty in a pig growth model based on body weight and feed intake data from boar stations using a Bayesian hierarchical model.

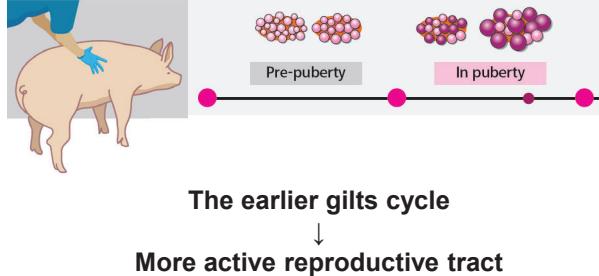
Rodrigo Mezencio Godinho, Haipeng Yu, Lisanne Verschuren, Egbert F Frank Knol, Rohan Fernando, Jack C M Dekkers, Eli Grindflek

Journal of Animal Science, Volume 103, Issue Supplement_3, October 2025, Page 315, <https://doi.org/10.1093/jas/skaf300.366>

Published: 04 October 2025

What about gilts?

14 Topigs Norsvin


 Topigs Norsvin

Rearing phase

Puberty stimulation and identification

“Physiological age at breeding is the most important criteria for determining the time of mating, rather than chronological age”

(Foxcroft G., Patterson J, 2010)

- To breed gilts with **210 - 220 days** of age and **respect HNS**
- Puberty stimulation should start at **150 - 160 days of age**
- Daily boar exposure (direct contact)

Rearing phase

Puberty stimulation and identification

Puberty stimulation and identification

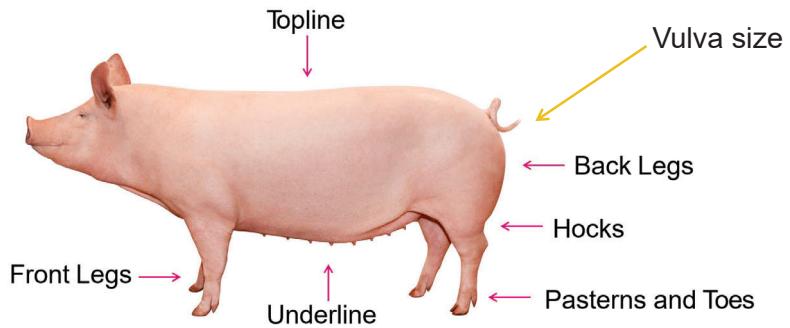
1. Identification of the most fertile gilts
2. Prevents delayed age at first mating
3. Decreases non-productive days

First estrus expression after boar exposure

Target: > 85% of gilts in heat in 30 days

Impact of heat no service (HNS)

1. Positive impact on farrowing rate and total born on parity 1
2. Positive impact on retention rate to parity 3
3. Positive impact on pigs born to parity 3


Respect the physiological age (HNS)

Target: > 95% of gilts bred with 1 annotated HNS

Rearing phase

Gilt selection and structure

Structure is the foundation for performance, welfare, reproduction success, and lifetime performance.

Rearing phase

Gilt selection and structure: vulva size

Is vulva size a predictor of fertility in gilts?

- Vulva size measured by vulva length and width
- Measurements taken at two stages in the development of the gilts

- Impact on parity 1 performance
- Impact on lifetime performance
- Impact on artificial insemination technique: ability to pass the catheter

Rearing phase

Gilt structure – vulva size

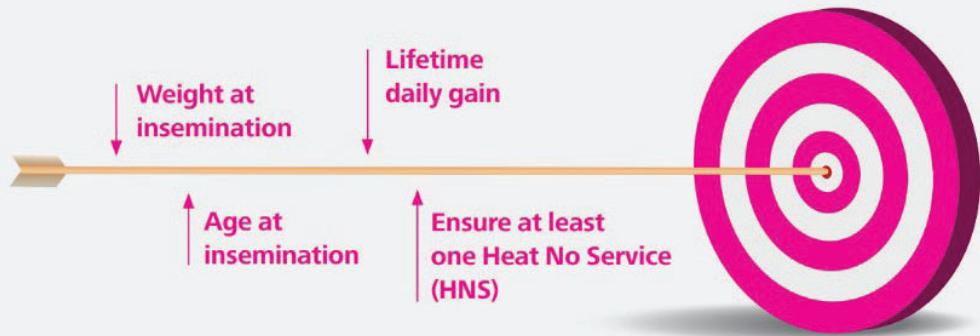
Preliminary analysis: Correlation of vulva size traits with production on parity 1

Trait	VW_corr	VL_corr	VA_corr	NR_TOTAL_BORN	NR_LIVEBORN	AGE_TEND	STD_LIFETIME_DAILY_GAIN	WEIGHT_TSTART	WEIGHT_TEND	VULVA_WIDTH_MM	VULVA_LENGTH_MM	vulva_area
VW_corr	1.00	0.52	0.91	-0.03	-0.02	0.02	0.07	0.02	0.08	0.94	0.47	0.82
VL_corr	0.52	1.00	0.81	0.04	0.03	0.03	0.10	0.06	0.11	0.49	0.82	0.72
VA_corr	0.91	0.81	1.00	0.01	0.01	0.02	0.09	0.04	0.10	0.85	0.69	0.89
NR_TOTAL_BORN	-0.03	0.04	0.01	1.00	0.89	0.05	0.02	0.09	0.03	-0.03	0.04	0.01
NR_LIVEBORN	-0.02	0.03	0.01	0.89	1.00	0.04	-0.03	0.06	-0.02	-0.03	0.03	0.00
AGE_TEND	0.02	0.03	0.02	0.05	0.04	1.00	-0.06	0.28	0.15	0.07	0.08	0.08
STD_LIFETIME_DAILY_GAIN	0.07	0.10	0.09	0.02	-0.03	-0.06	1.00	0.68	0.98	0.08	0.12	0.11
WEIGHT_TSTART	0.02	0.06	0.04	0.09	0.06	0.28	0.68	1.00	0.67	0.04	0.08	0.06
WEIGHT_TEND	0.08	0.11	0.10	0.03	-0.02	0.15	0.98	0.67	1.00	0.10	0.14	0.13
VULVA_WIDTH_MM	0.94	0.49	0.85	-0.03	-0.03	0.07	0.08	0.04	0.10	1.00	0.59	0.91
VULVA_LENGTH_MM	0.47	0.82	0.69	0.04	0.03	0.08	0.12	0.08	0.14	0.59	1.00	0.86
vulva_area	0.82	0.72	0.89	0.01	0.00	0.08	0.11	0.06	0.13	0.91	0.86	1.00

Trait	Total born	Born alive	Body weight
Vulva width	0.03	0.02	0.08
Vulva length	0.04	0.03	0.11
Vulva area	0.01	0.01	0.10

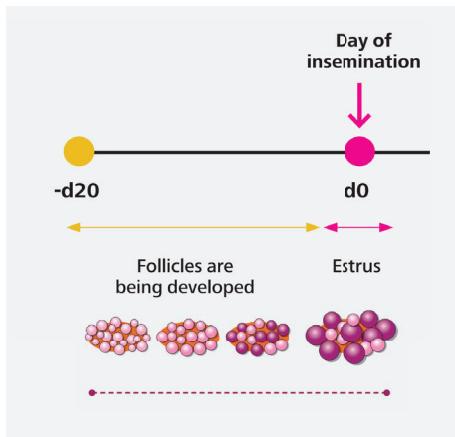
Rearing phase

Gilt structure – vulva size


Preliminary analysis:

- Vulva size is not correlated to production traits (total number born and born alive) on parity 1
- All gilts were successfully inseminated
- Analysis of subsequent performance will be performed
- Selection of replacement gilts based on the size of the vulva focusing on production is not currently advised

Pre-breeding strategies and breeding targets



Breeding targets

Pre-breeding strategies

20 days before the insemination

- Any routine procedure that disrupts feed intake of gilts before insemination ***negatively impact ovarian quality.***
- Proper acclimation and crate breaking at least 14 days before the insemination
- Avoid any sources of stress

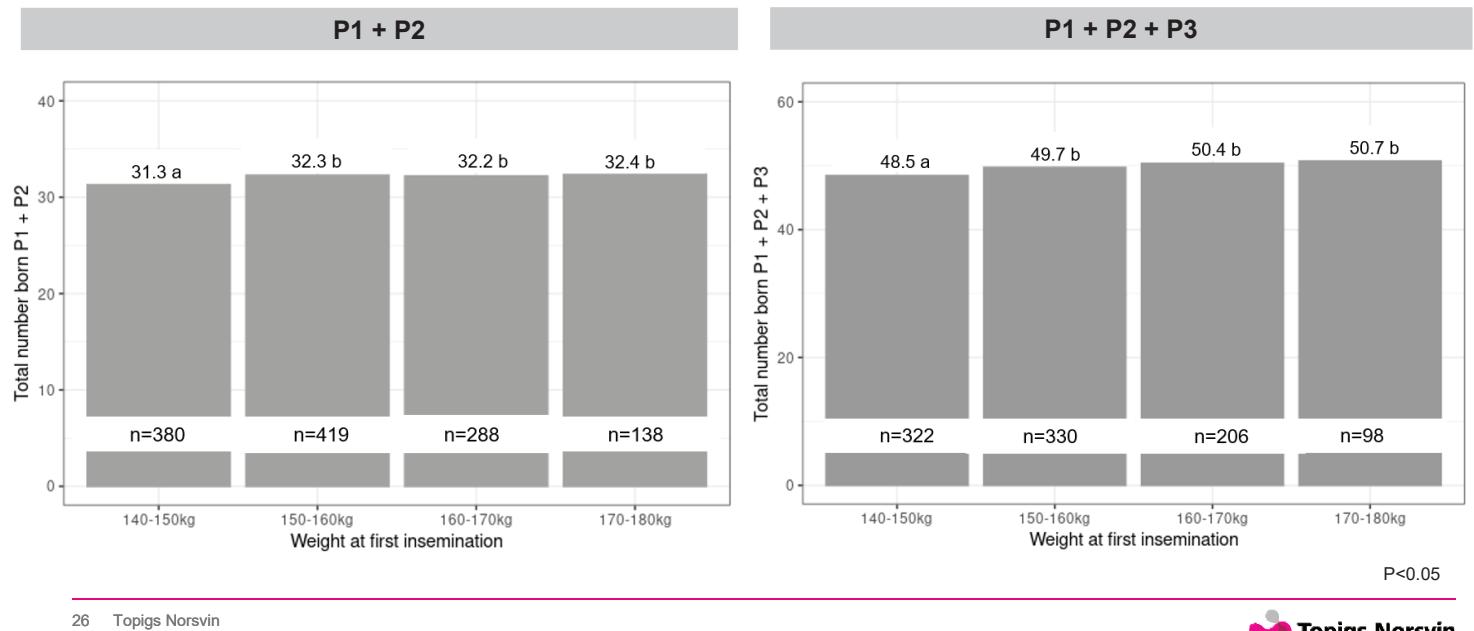
Pre-breeding strategies

20 days before the insemination

Flushing

Increase energy and nutrient uptake

- Promote insulin secretion and progesterone clearance
- Stimulate GnRH release and LH pulses
- Improve ovarian activity and ovulation rate
- No “superovulation” effect

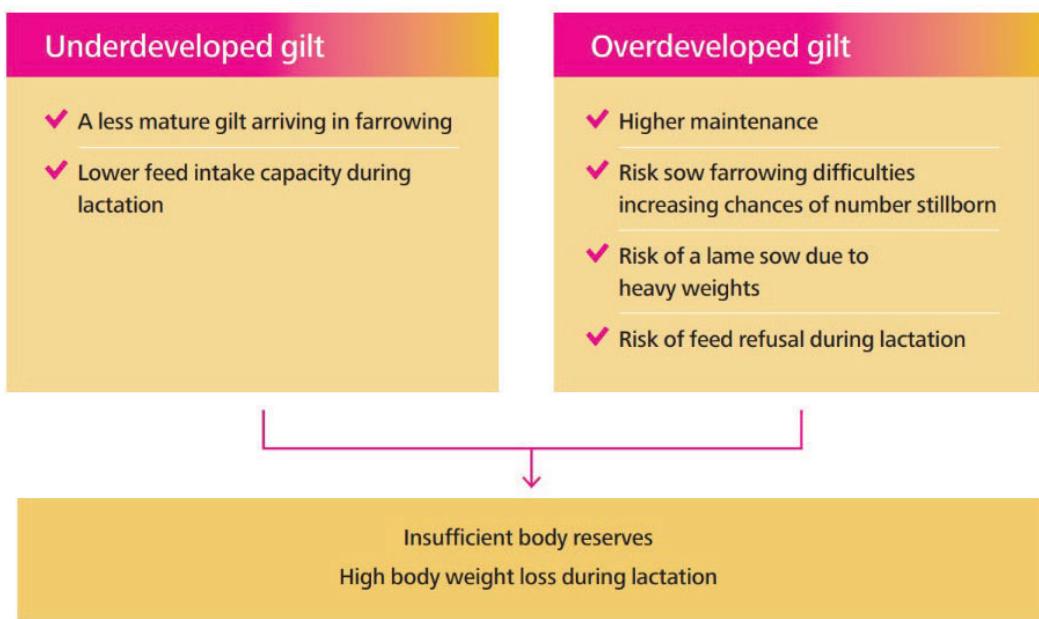

Gilts	Up to target weight and age	Improve ovulation rate and total born
	Over target weight and age	Improve ovulation rate but no improvement in total born
Breeding	In 2 nd estrus	Improve ovulation rate and total born
	In 3 rd or later estrus	Improve ovulation rate but no improvement in total born

M.B. Menegat 2021

(presentation at ASAS MIDWEST 2021 - Nonruminant Nutrition Symposium II)

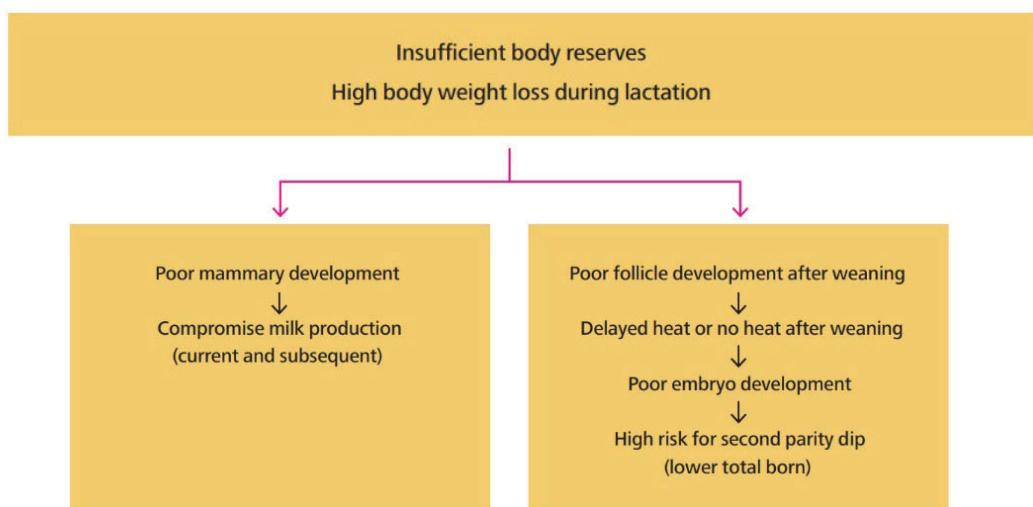
Breeding targets

Cumulative performance = sum of TNB over parities


Body weight development during gestation

Body weight development during gestation

- Weight gain during first gestation is important to prevent reproduction losses and enable young sows to continue to grow


Body weight development during gestation

Body weight loss during lactation

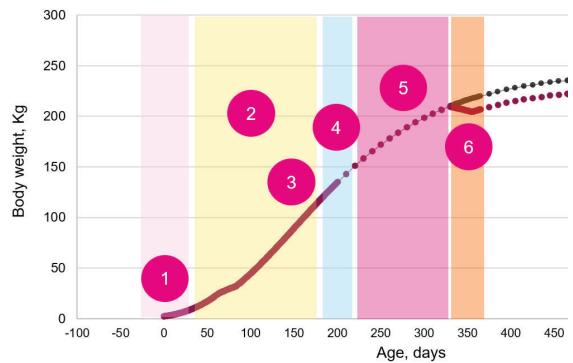
Body weight loss during lactation and subsequent performance

- Lactation management of first parity sows starts with ensuring that sufficient body reserves are present at farrowing to support milk synthesis and mammary growth.

Body weight loss during lactation and subsequent performance

Effect of relative weight loss (%) during the first lactation of TN70 sows on reproductive performance and litter characteristics in the second parity.

	Weight loss			P-values ¹
	<6%	6-12%	>12%	WL
First parity				
Bodyweight gestation D107 (kg)	235±1 ^a	238±1 ^{a,b}	245±1 ^b	<0.01
Back fat gestation D107 (mm)	15.8±0.4 ^a	16.5±0.4 ^{a,b}	17.0±0.4 ^b	<0.01
Piglets weaned	12.1±0.1 ^a	12.6±0.1 ^b	12.9±0.1 ^c	<0.001
Bodyweight loss parturition - weaning	0.6±0.6 ^a	17.7±0.6 ^b	36.9±0.6 ^c	<0.001
Back fat loss gestation D107– weaning	3.2±0.3 ^a	4.5±0.3 ^b	5.5±0.3 ^b	<0.001
Second parity				
Weaning-to-insemination interval	4.5±0.1 ^a	4.5±0.1 ^a	4.7±0.1 ^b	0.03
Farrowing rate	92.1±2.8	84.8±2.7	85.4±3.0	0.13
Total number born	15.6±0.3^a	14.6±0.3^a	13.2±0.3^b	<0.001
Number born alive	14.9±0.3 ^a	13.9±0.3 ^a	12.7±0.3 ^b	<0.001
Number stillborn	0.73±0.08	0.73±0.08	0.51±0.09	0.12


Take home message

Rearing gilts for proper development

Take home message

Gilt development is a long-term commitment that encompasses **structural soundness**, the ability to support the litter during gestation and **lactation**, and the **capacity to rebreed after weaning**.

- 1 Select gilts with more than 1Kg at birth
- 2 Support life daily gain >650g/day
- 3 Start boar exposure with 150-160 days of age
- 4 Flush the gilts prior to the first insemination
- 5 Ensure 60 Kg of weight gain during the first gestation
- 6 Prevent >6% of weight loss during the first lactation

Thank you!

julia.linck.moroni@topigsnorsvin.com