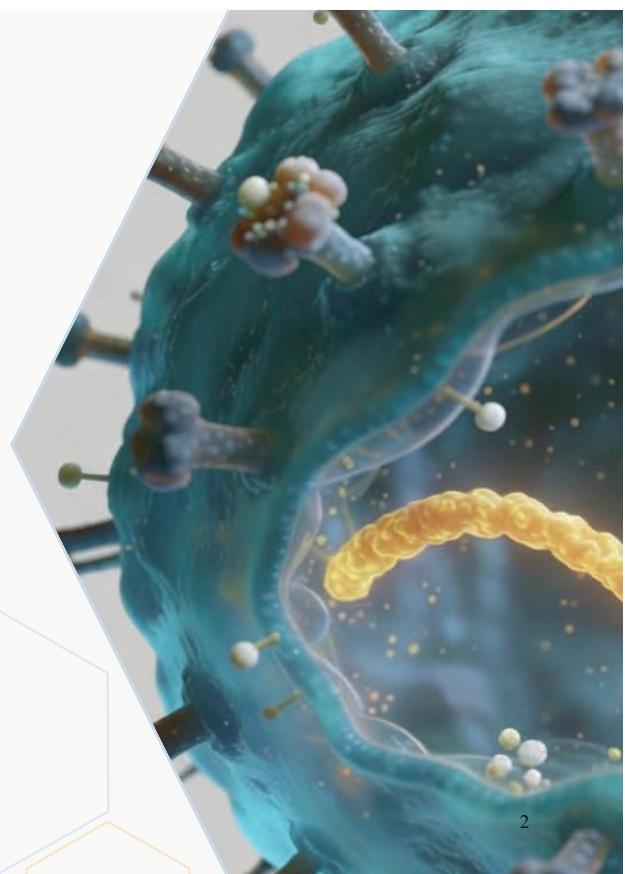
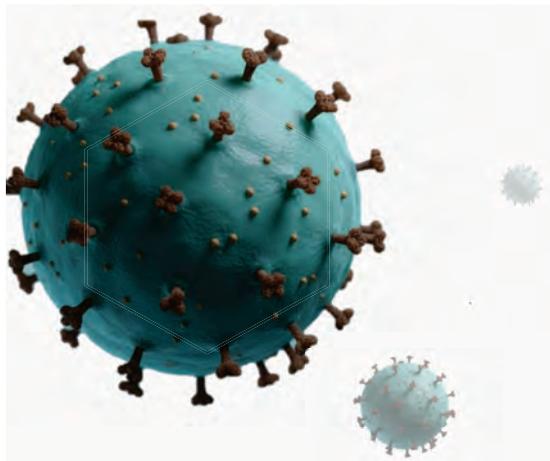


Managing and Eliminating Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) During Farm Outbreaks

Mark Bernard Asuncion, DVM

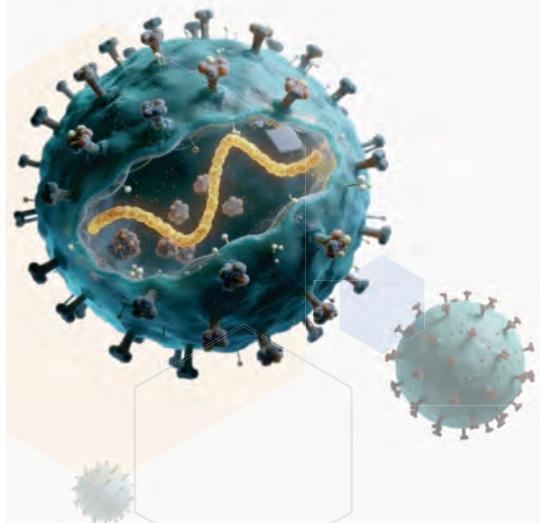
Banff Pork Seminar


January 7 - 8, 2026


1

PRRSV: An Overview

- Highly contagious viral disease
- Significant impact on global pork production
- Severe respiratory issues – young and growing pigs
- Reproductive failure: Breeding herds
- Management and elimination -comprehensive understanding of etiology, epidemiology, and economic impact


2

Topics

Etiology and Economic Significance

Betaarterivirus europensis (PRRSV-1)

Betaarterivirus americense (PRRSV-2)

- demonstrates extensive genetic and antigenic diversity due to high mutation and recombination rates, leading to the continual emergence of novel isolates
- genetic variability complicates diagnostics and limits vaccine and control program effectiveness.

Economic Impact

- most recent assessments indicate the cost now exceeds \$1.2 billion annually
- Losses from direct and indirect costs

Epidemiological Characteristics

PRRSV Stability

- Survival influenced by: moisture, temperature, pH, matrix, UV light
- Temperature stability:
 - Stable for months to years at -70°C and -20°C
 - Rapidly inactivated by heat and drying
- pH stability:
 - Optimal at pH 6.25 (4°C) and pH 6.0 (37°C)
- Water survival: Up to 11 days – contaminated drinking water and lagoons are potential sources

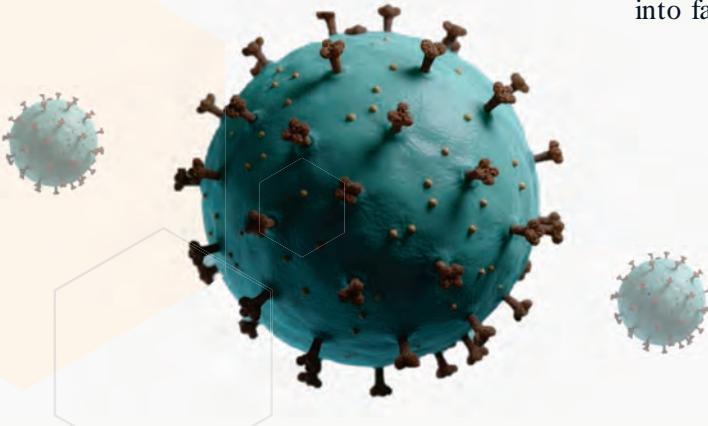
Manure/feces:

- Half-life: 112.6 h at 4°C , 14.6 h at 22°C
- Feces protects virus from heat by insulating inner layers

Inactivation:

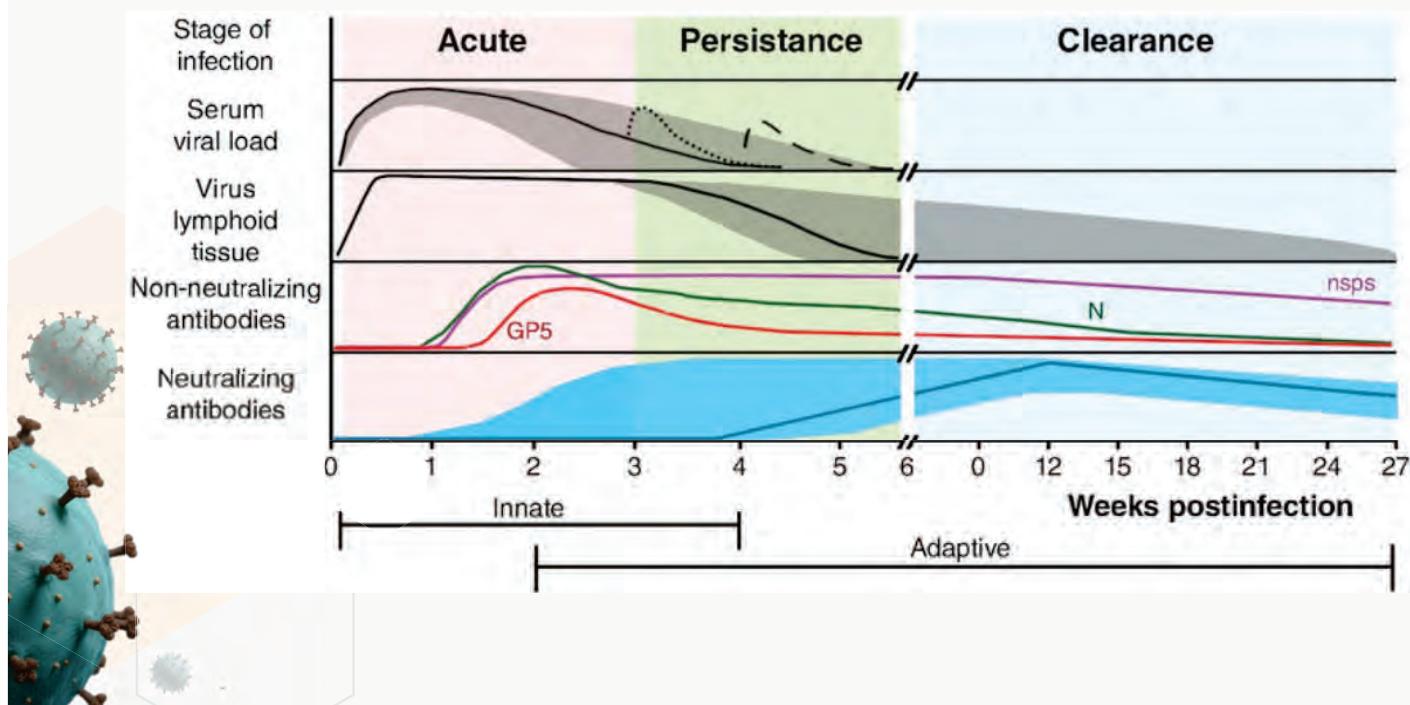
- Lipid solvents, common disinfectants (chlorine, iodine, quaternary ammonium compounds)
- Low-concentration detergents disrupt the viral envelope

Surface decontamination:


- Drying or thermal-assisted drying
- Glutaraldehyde or quaternary ammonium chloride disinfectants
- UV-C treatment

5

Epidemiological Characteristics


Transmission

- virus is shed in multiple bodily fluids
- **Horizontal transmission** occurs through direct contact and parenteral routes
- IM infectious dose as low as ≤ 20 viral particles
- **Vertical transmission** during late gestation can cause fetal death, weak born or stillborn piglets, and introduce infection into farrowing rooms

6

PRRSV Infection

The Challenge

Prolonged Infection and Viral Persistence

- ability to establish prolonged infections in individual animals
- persist in lymphoid tissues, particularly the tonsils and lymph nodes
- infectious virus detected up to 157 days post-infection and viral RNA up to 251 dpi
- Clinically healthy carriers can intermittently shed virus acting as reservoirs

Managing and Eliminating PRRS Strategies

Whole-herd depop-repop
Herd Closure and Rollover
(Test-and-removal)

9

Whole-herd depopulation and repopulation strategy

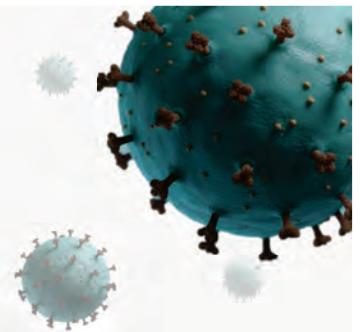
- most effective for PRRSV elimination, minimizing reinfection risk and ensuring complete virus removal
- extremely high cost makes it impractical for most commercial operations
- justifiable in herds infected with highly virulent isolates that are challenging to stabilize
- feasible alternative for farrow-to-finish herds where on-going replication of PRRSV in the growing population does not allow for the elimination of the virus

10

Herd closure and rollover strategy

- the most widely used, balancing cost and efficiency.

Load-Close-Expose (LCE) protocol

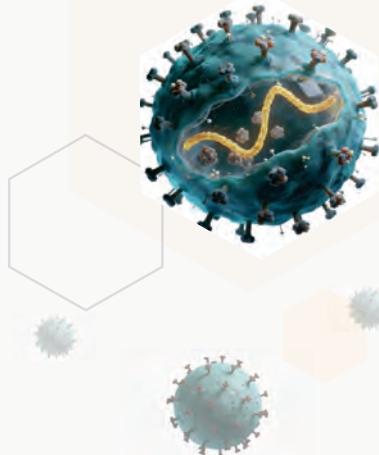

- LOAD involves introducing a single batch of PRRSV-negative gilts to meet replacement needs
- CLOSE the herd to new introductions for 210–250 days, or more depending on the PRRSV isolate, and management practices employed
- EXPOSE to PRRS to homogenize the herd using Modified Live Vaccine (MLV) and/or Live Virus Inoculation (LVI), used under veterinary supervision

Rollover

- naive gilts are introduced at the end of the herd closure to assure that PRRSV is no longer shed in the breeding herd.
- The herd “rolls over” as the old, once infected sows are replaced by new, PRRS-negative females.

11

Test and removal strategy



- identifies and culls PRRSV-positive animals via repeated qPCR testing
- effective but rarely applied in large herds due to expense and time constraints
- can be applied late in the closure period to identify and cull remaining positive animals

12

Defining the Goal

The AASV Herd Classification System

The updated AASV classification system categorizes herds as:

- Positive Unstable (I-A/I-B)
- Positive Stable (II or II-vx if vaccinated),
- Provisional Negative (III)
- Negative (IV)

13

Herd classification system for PRRSV.

Herd category	Shedding status	Exposure status	Evidence to promote a herd to category
Positive Unstable High Prevalence (IA)	Positive, high prevalence	Positive	None required
Positive Unstable Low Prevalence (IB)	Positive, low prevalence	Positive	Serum or FOF from weaning-age pigs or PF tested by PCR
Positive Stable Without Vaccine (II) and With Vaccine (II-vx)	Uncertain	Positive	Serum from weaning-age pigs (may be used w/ PF and FOF concurrently) tested by PCR
Provisional negative (III)	Negative	Positive	Serum from PRRSV naive replacement breeding animals tested by ELISA
Negative (IV)	Negative	Negative	Serum from adult breeding animals tested by ELISA

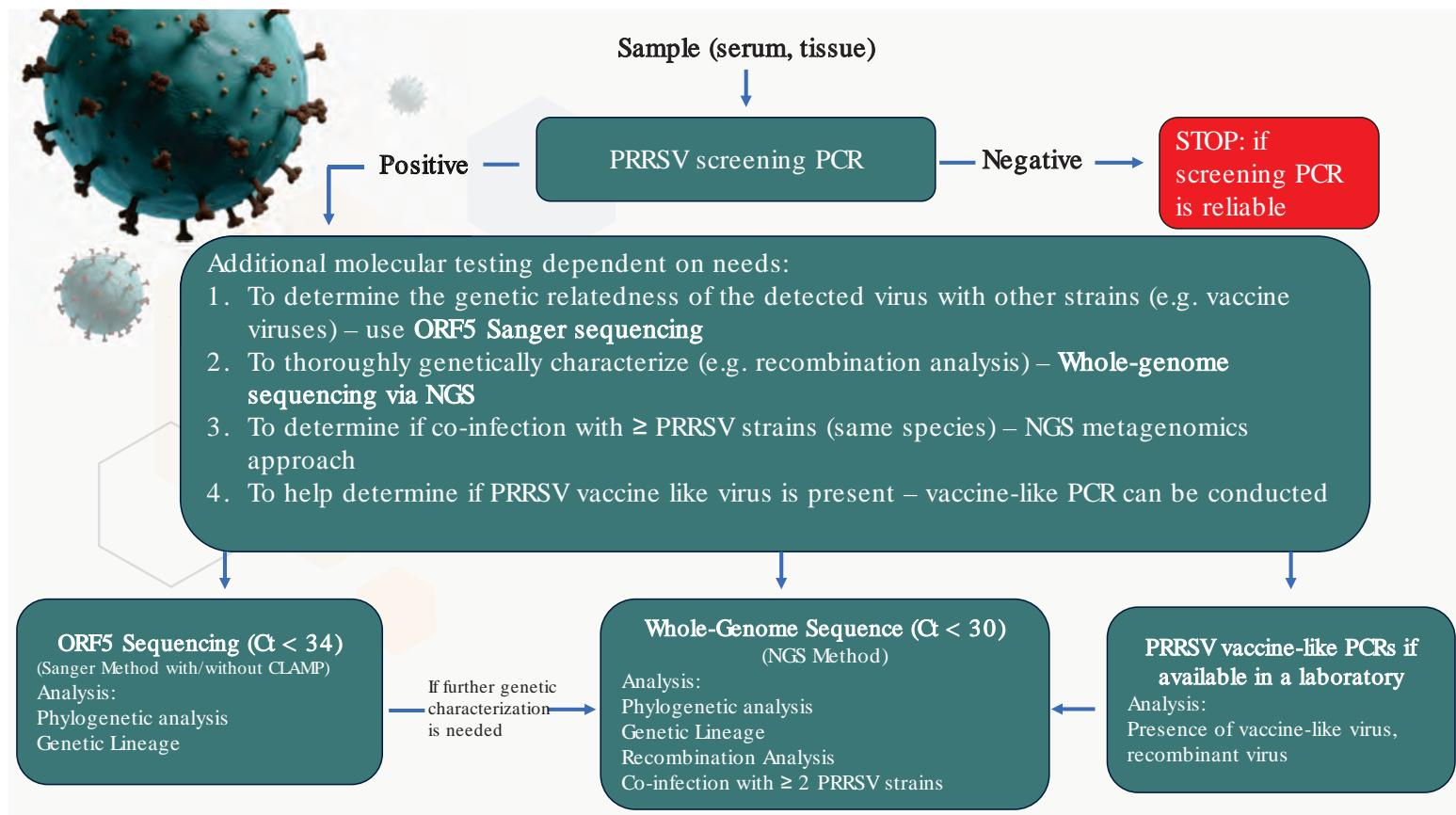
Defining the Goal

The AASV Herd Classification System

The updated AASV classification system categorizes herds as:

- Positive Unstable (I-A/I-B)
- Positive Stable (II or II-vx if vaccinated),
- Provisional Negative (III)
- Negative (IV)

14

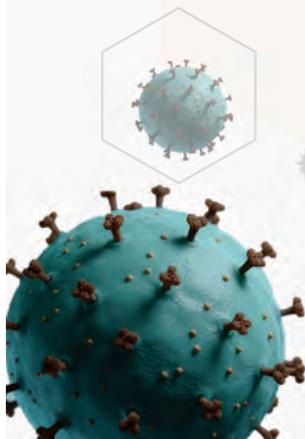

Comparing Exposure Methods

Selecting the “immunogen”

- critical decision that influences both virological control and economic outcomes
- identify the PRRSV isolate

15

Comparing Exposure Methods


Selecting the “immunogen”

- critical decision that influences both virological control and economic outcomes

Main options:

- Live Virus Inoculation (LVI), which uses the farm's resident field virus, and
- commercial Modified-Live Virus (MLV) vaccines
- *PRRS Killed Vaccine? – less immunogenic*
- *Autogenous Killed Vaccine?*
- To date, exposure to live virus remains the most effective approach for inducing protective immunity.

17

Key Recovery Metrics:

- **Time to Stability (TTS)**
 - virological endpoint
 - From Day 0 → PCR-negative pigs at weaning
- **Time to Baseline Production (TIBP)**
 - economic endpoint
 - number of weeks required for the farm to recover pre-outbreak productivity
- **Total losses per 1000 sows:**
 - cumulative pigs not weaned per 1000 sows attributable to the outbreak and its control program

18

Time to Stability (TTS) and Time to Baseline Production (TTBP)

61 breeding herds (2009-2012)

	LVI	MLV
Median TTS	25.1 weeks (IQR: 20.7-31.0)	32 weeks (IQR: 26.6-41.0)
Median TTBP	21 weeks (IQR: 13-24)	10 weeks (IQR: 0-15)
Cumulative losses (pigs not weaned/1000 sows)	2665.0 pigs	1222.2 pigs

Linhares et al, 2014

IQR (interquartile range) = the spread of the middle 50% of the data.

19

Time to Stability (TTS)

161 PRRS Outbreak, 82 breeding herds; Midwestern USA (MN, IA, NE, SD, CO)

Dr. Bob Morrison Swine Health Monitoring Project (MSHMP)

Median TTS	41 weeks
Max TTS:	163 weeks
Summer:29	Median 53 weeks
Fall:58	Median 38 weeks
Winter:44	Median 35.5 weeks
Spring:30	Median 54 weeks

Sanhueza et al, 2018

Q1 = 25% stabilized in 31 weeks

Q3 = 75% stabilized in 55 weeks

- Spring and summer outbreaks have longer TTS mainly because the “last phase” of elimination runs through the cold season.
- **18/161** = farms that had a previous PRRS outbreak within a year achieved stability twice as fast

20

Study on PRRSV-2 Variant L1C1–2–4

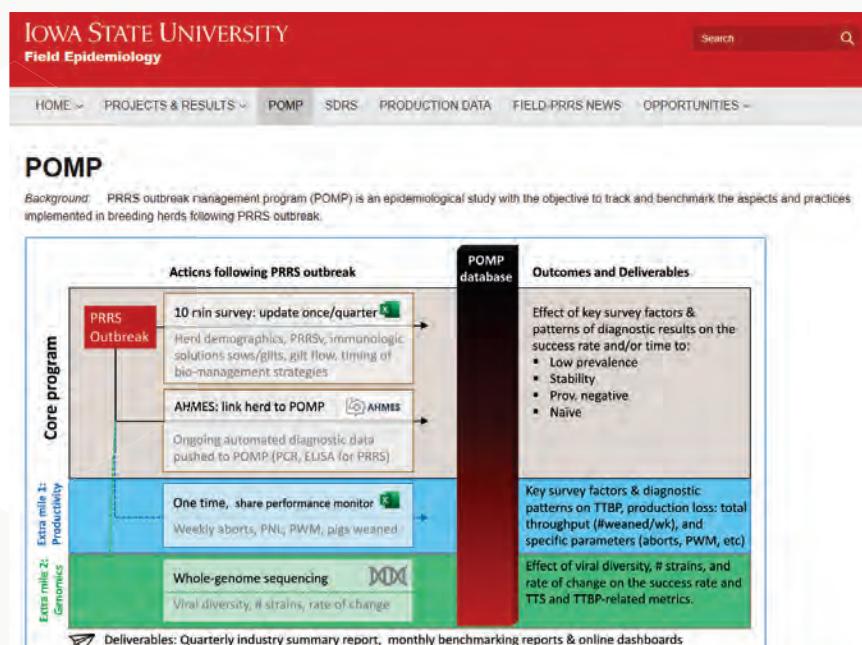
- **Field Surveillance 2018–2023**

- **Study Overview:** Evaluated time to stability and genomic classification of a new PRRSV-2 variant (monophyletic clade L1 C.2) detected in U.S. swine herds

Data Source: 41,038 ORF5 sequences from MSHMP database (2018–2023).

- **Key Finding:** Monophyletic clade L1 C.2 had superior diagnostic accuracy (PPV 90.95%) compared to traditional RFLP and lineage classifications for identifying the emergent variant.

33 herds	L1C1–2–4 variant
Median TTS	87 weeks (IQR=44–91 weeks)


IQR = the spread of the middle 50% of the data.

Classification Method	PPV (%)	Interpretation
RFLP 1–2–4 alone	39.95 (TP=292, FP =439, FN=90)	Most 1–2–4 sequences not L1 C1–2–4
Lineage 1C alone	4.74	Broad label, many non-variant viruses
Lineage 1C + RFLP 1–2–4	65.32	Better but still many false positives
Monophyletic clade L1 C.2	90.95	Best performance; true variant identification

Kikuti et al., 2024

21

The Impact of Farm Management on Recovery

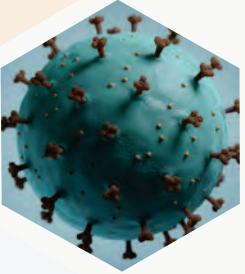
The Impact of Farm Management on Recovery

Management System

- Determinant of recovery than the specific biological tools used according from the PRRS Outbreak Management Program (POMP), a database tracking hundreds of herd outbreaks.
- clear contrast between farms utilizing batch farrowing versus weekly farrowing systems:
 - **TIS was 25 weeks faster in farms using batch farrowing** compared to those operating continuous flow systems

McRebel

focus on minimizing piglet exposure to pathogens through strategic management changes


23

The Impact of Farm Management on Recovery

MCREBEL^{25,26} (Management Changes to Reduce Exposure to Bacteria to Eliminate Losses)

- Purpose: A systematic approach to reduce the spread of secondary bacteria and PRRSV among farrowing house pigs and to nursery pigs.
- Protocol:
 - cross foster only during the first 24 hours of life;
 - do not move sows or piglets between rooms;
 - eliminate the use of nurse sows;
 - humanely destroy piglets that become sick and are unlikely to recover;
 - minimize handling of piglets, especially administration of routine antibiotics or extra iron injections;
 - do not transfer undersized pigs back to rooms containing younger litters;
 - immediately stop all feedback of porcine tissue;
 - move nursery pigs according to strict AIAO principles, allowing for 2–3 days between groups for cleaning and disinfecting.

24

The Critical Role of Diagnostics and Monitoring

Sampling Schemes to Confirm Stability

The Test and Removal Strategy

From Serum to Novel Tonsil-Based Methods

25

	Category	I-B (Positive Unstable, Low Prevalence)	II and II-vx (Positive Stable and Positive Stable With Vaccination)
	Testing Purpose	To promote into	To promote into
Option 1	Sample Tested	30 Serum from weaning-age pigs	60 Serum from weaning-age pigs
	Test (PCR)	5 pigs/pool	10 pigs/pool
	Testing Frequency	Monthly for 90 days or at least 4 batches	Monthly for 90 days or at least 4 batches
	Requirement to promote	75% (3 of 4) of monthly or batch herd tests are negative	100% (4 of 4) of monthly or batch herd tests are negative
Option 2	Sample Tested	Processing fluid (Majority of litters from 1 week farrowing)	Concurrently: 1) 30 serum from weaning-age pigs; 2) Processing fluids (Majority of litters from 1 week farrowing)
	Test (RT-PCR)	1 or more pools	1) 5 pigs/pool 2) 1 or more pools
	Testing Frequency	Monthly for 90 days or at least 4 batches	1) Monthly for 90 days or at least 4 batches 2) Weekly for 90 days or at least 4 batches
	Requirement to promote	75% (10 of 13) of weekly or batch herd tests are negative	1) 100% (4 of 4) of monthly or batch herd tests are negative 2) 100% (13 of 13) of weekly or batch herd tests are negative

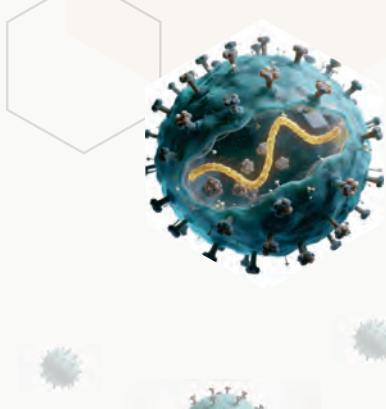
	Category	III (Provisionally Negative)	IV (Negative)
	Testing Purpose	To promote into	To promote into
Option 1	Sample Tested	60 serum from PRRSV naive replacement breeding animals that have been in herd for at least 60 days	Serum from adult breeding animals
	Test (ELISA)	Individual	Individual
	Testing Frequency	Once	Once
	Requirement to promote	One-time herd test is negative	One-time herd test is negative

The AASV Herd Classification System (*Holtkamp et. al, 2021*)

27

Prolonged Infection: A Key Challenge

PRRSV Persistence:


- PRRSV persistence in sow herds prolongs time to stability (TTS).
- Even with effective load–close–expose (LCE) programs, some animals become prolonged shedders.
- Detection occurred at very low prevalence
- Majority of positives identified during the farrowing phase
- Key risk factors for prolonged carriage include younger age (<33 weeks old) and breed - Meishan (*Mainquist-Whigham et al.*)

28

Overcoming Prolonged Infection: The Test and Removal Strategy

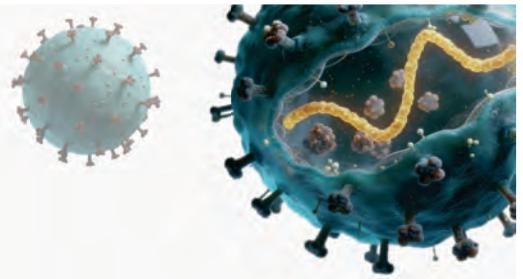
Test-and-Removal Strategy


- Applied late in herd closure (approximately 140–150 days post-infection)
- Objective: identify and segregation or removal of remaining PRRSV-positive animals
- Proposed to accelerate achievement of herd stability
- Applications of TOSc Sampling as an alternative to Tonsil Scraping

29

Feature	Tonsil scraping	TOSc (tonsil-oral-scrubbing)
Sampling tool	Rigid instrument (e.g., long-handled spoon) scraping tonsil surface.	Sponge/swab rubbed briefly over tonsil and oral cavity.
Invasiveness / welfare	Most invasive ; more abrasion and discomfort.	Least invasive; scrubbing, less discomfort
Restraint needed	Usually full restraint /snarer.	Brief handling; sometimes no snare needed .
Sensitivity	Highest detection and lowest Ct vs serum, oral fluids, TOSc.	Better detection than serum/oral fluids but lower than scraping.
Labor	Time-consuming , hard to scale.	Fast and practical for routine herd monitoring.
Typical use case	Maximal sensitivity for persistent carriers, small high-value groups.	Routine PRRSV monitoring in sow herds where welfare and labor are major constraints.

30


Summary

PRRSV Outbreak Management: Three Pillars

- **Rapid Containment:** Strict external & internal biosecurity.
- **Herd Stabilization:** Herd closure & rollover; deliberate exposure with LVI/MLV to homogenize immunity.
- **Stepwise Elimination:** Structured, preplanned frameworks guided by diagnostics and AASV PRRS classification.

Key Success Factors:

- Management as critical as immunogen choice: batch farrowing, all-in/all-out, McREBEL piglet care → shorter time-to-stability, lower losses.
- Monitoring: serum, processing fluids, tonsil-oral scrapes in low-prevalence herds.
- Advanced options: depop-repop or targeted removal of prolonged shedders in select scenarios for accelerated elimination

Thank you

Mark Bernard Asuncion, DVM

SMART Program, Department of Large Animal Clinical Sciences,
University of Saskatchewan

mark.asuncion@usask.ca

403-352-3962

