Results & Perspectives about Automated Water Intake Recording, Infrared Thermography and Visual systems

January 10th & 11th, 2018

Frédéric Fortin, agr., M.Sc. Patrick Gagnon, Ph.D. Jean-Gabriel Turgeon, B.Sc. Engineering Violette Caron-Simard, agr., B.Sc.

Outline

- Introduction
- Technologies & Systems
 - Individual Water Consumption System
 - Infrared thermography
 - Vision system to evaluate weight and conformation
 - Tracking system to assess behaviour
- Conclusion

Deschambault Station

- Built in 1994 in Deschambault, Quebec
- Wean to finish operation of 360 pigs
- All-in-all-out swine production (until 2015)

The Station: a Phenomics Center

- "You can't improve what you can't measure"
- Difficult or expensive to measure traits
- Measurements:
 - Precise, goal-oriented, repeatable, automated, rapid, affordable, applicable, relevant

Individual water consumption system

Individual Water Consumption System

Recording system

- Created by the CDPQ in 2013
- Measures water consumption per pig
- Individual identification system
- Installed in 28 pens

Individual Water Consumption System

- Results from data recorded during:
 - Trial 36: 361 pigs (Jan-Mar 2015)
 - Trials 37: 295 pigs (Jul-Oct 2015)
 - Females, castrates, Improvest[®] males, intact males
 - Other performance measurements recorded (feed intake, growth, carcass, etc.)

Effect of some parameters on water intake

Least-squares means per food phase for each factor. Modalities with different letters indicate a statistically significant difference (95% level). For sex, the Sidak adjustment was applied to account for multiple comparisons.

Water intake, feed intake and number of health treatments during the grow-finish phase

- Water and feed are reliable early indicators of health problems
- Several decreases in water consumption prior to treatments
- Water can detect health problems 3 days prior to the treatment

Lessons learned from water recording

- Seasonal effect
 - Adjustment of T° data needed during summer
 - Some wasting behaviors (specific pigs during summer)
 - Good water pressure needed during summer
- New systems should record only from the nipple (water meter)
- Precise and affordable measurement

Potential applications in pig production

- Water intake recording in the pen (no RFID system)
 - Leads to a lower cost for the producer
 - Identification of health problems (at herd level)
 - Highly correlated to feed intake
- Individual water intake recording (RFID system)
 - Adjustment for T° needed for summer
 - Identification of sick animals (at individual level)
 - Assessment of behaviour, activity level, stress, etc.
 - Specification of drug concentrations in water

Infrared thermography

Infrared thermography

- Measurement of emitted heat (C°)
- Rapid method
- Non invasive
- No animal handling

Infrared thermography (project 1 - nursery)

- Piglets from a natural disease challenge model
- Camera installed above 3 pens in the nursery
 - Picture taken every 5 minutes
- Group image analysis
 - T° data (max, mean, sub-group, etc.)

Infrared thermography (project 1 - nursery)

Daily mean (24h rolling average) max T° for one replicate

du porc du Québec inc.

Infrared thermography (project 2 – growing phase)

- Development of a custom bowl
- 2 cameras installed
 - A325 sc (\$10k)
 - AX8 (\$1k)
- T° measured from individual pig
- Comparison between 2 different cameras
 - Quality (correlation)
 - Automation
 - Reliability
 - Durability

Infrared camera FLIR A325sc

Centre de développement du porc du Québec inc.

Infrared thermography (project 2)

Infrared camera FLIR A325sc

Infrared camera FLIR AX8

Infrared thermography (project 2)

Infrared camera FLIR A325sc

Infrared camera FLIR AX8

Infrared thermography (project 2)

- T° for A325 is higher, but it is a higher quality camera (more expensive)
- Same pigs used for each period of time
- Eye is always visible when using the new bowl

	A325	AX8
Time	Temperature (°C)	Temperature (°C)
6h16		35.4
6h35	36.0	35.2
7h07	36.1	34.8
9h44	36.5	35.3
10h00	36.4	35.1
10h30	36.0	35.5
10h46	35.4	35.1
11h21	35.6	35.2
11h58	36.1	34.6
13h39	36.4	35.7
14h07	35.7	34.9

Lessons learned from infrared thermography

- Many factors influence heat emission (activity, stress, ambiant T°, ...)
- Adjustment needed for summer
- Rapid and non invasive method
- No animal handling
- Precise and can be affordable

Potential applications in pig production

- Identification of sick animals
- Assessment of the level of activity or stress
- Indicator of feed efficiency
- Relationship with the quality of the meat (pre-slaughtering stress)

- 3 systems tested (1- OptiSORT (Hölscher+Leuschner))
 - 2D version in 2014
 - Hog sorting system
 - Weight + primal cuts

Source: http://www.hl-agrar.de/files/19H+L_optiSORT.pdf

• 3 systems tested (Kinect cameras)

- 3 systems tested (PigWei)
 - From Ymaging (Spain)
 - Real time data analysis
 - Version 1 tested (videos)
 - Version 2 under development (images)

Centre de développement du porc du Québec inc.

Results from the CDPQ's research

	Weighting scale	Optisort	Kinect system	PigWei
Trial	Sept 2014	Sept 2014	Sept 2015	2017
Number of pigs	72	72	35	90
Average body weight	95.6 kg	95.6 kg		
Average half carcass weight			52.6 kg	
Standard deviation	0.63 kg	2.85 kg	1.9 kg	
Coefficient of variation	0.659%	2.98 %	3.61 %	

Centre de développement du porc du Québec inc.

Lessons learned from vision system

- Benefits for weighing:
 - No animal handling
 - Less stress and injuries (welfare)
 - Rapid and flexible measurements
- Other benefits:
 - Prediction of primal cuts yield
 - Relationship with other traits
 - Carcass quality
 - Lean yield
 - Feed efficiency
- Some imprecision of weight prediction from volume

Potential applications in pig production

- Kinect cameras:
 - Not very user friendly in commercial farms
 - Development needed from image capture to image analysis
- OptiSORT
 - Hog sorter (following manifacturer specifications)
 - New version (3D, lean meat, carcass quality)
- PigWei
 - Technology may be able to replace human eye
 - Algorithm already functional in Spain
 - Development needed for Canadian breeds

- Software «EthoVision XT Noldus Information Technology »
 - Nursery
 - Colour tape

Centre de développement du porc du Québec inc.

• Quuppa system installed in October 2017

du porc du Québec inc.

• TrendNet Cameras

2017 Tue 16:18:39

Centre de développement du porc du Québec inc.

017 Tue 16:18:58

Potential applications in pig production

- New phenotypes:
 - Active and inactive time
 - Velocity and acceleration
 - Time spent in a zone and number of visits
 - Number of contacts with an object or other pigs
- Assessment of behaviour, activity level, stress, etc.
- Identification of sick animals

Conclusion

- The challenges from technologies
 - 1. Long time horizon for technology development & innovation
 - 2. Data analysis and interpretation of the results
 - 3. The technology not an end in itself
 - 4. Many technologies under development
 - Ex: More than 10 technologies for body fat measurement

Acknowledgements

We would also like to thank all the people involved:

Farm employees Louis Moffet and Hélène Mayrand;

Students Gabrielle Dumas and Simon Beaulieu;

Technical advisers Richard Mailhot, Raymond Deshaies, Hélène Fecteau, Israël Michaud, Éric Ouellette and Mélanie Poulin;

Project leaders Marie-Aude Ricard, Jean-Gabriel Turgeon and Violette Caron Simard;

Statistician Patrick Gagnon;

Others: Laurence Maignel, Brian Sullivan, Marie-Pierre Fortier, Sébastien Turcotte, Léonie Morin Doré, Jacquelin Labrecque, Joël Rivest, Nigel Cook, Tong Liu, ...

Centre de développement du porc du Québec inc.

Acknowledgements

This project is funded by Swine Innovation Porc within the Swine Cluster 2: Driving Results Through Innovation research program. Funding is provided by Agriculture and Agri-Food Canada through the Agri-Innovation Program, provincial producer organizations and industry partners.

Thank you!

ffortin@cdpq.ca

