Modeling the Economics of Sow Longevity

Banff Pork Seminar

January 9 & 10, 2019

Dr. Derald Holtkamp, Iowa State University College of Veterinary Medicine

How do you decide whether to make investment in improving sow longevity?

Right tool for the job is a cost-benefit analysis

value)

- Process of weighing all costs and benefits of an
 Intervention
 Intervention
- Purpose is to make an informed decision £20 Purpose
 To implement (or not) an intervention
- There must be a common unit of measurement for all costs and benefits.
 Money Boss 42754 F
 Boss 42754 F

Cost-benefit analysis is an old, well established tool

What is the value of a life?

- \$9.4 million (US Transportation Department)
- \$9.1 million (US Environmental Protection Agency)

IOWA STATE UNIVERSITY

 \$7.9 million (US Food and Drug Administration)

College of Veterinary Medicine

A case study

- Retrospective cost-benefit analysis of investments in a gilt management program to improve sow longevity
 - Are we getting a return on our investments in gilt development?

Objective

- Estimate the costs and benefits of improving sow longevity
 - Intervention was gilt management program using
 - Boar exposure
 - Altrenogist (Matrix[®])
 - Combination of eCG (400 IU) and hCG (200 IU) PG600[®]
 - Sow longevity measured by parity removal distribution

Study herd

- 2,400 sow farm
- Group-housed gestation
- PRRSV positive stable (category II)
- Gilts were isolated off-site six weeks prior to entry

Gilt management program

Gilt management program

Data and comparison periods

- Gilt management program was initiated in July of 2004
- Summary of lifetime reproductive performance was obtained for the study farm
 - 30 months before the gilt management program was implemented (Before)
 - 30 months after (After)

Summary of results for gilt management program (After)

Parameter	Value
Number of weeks	120
Number treated with Matrix	3650
Percent served, after Matrix	81.5%
Percent treated with PG600 (0.3% not treated)	18.2%
Percent culled (no heat)	5.7%
Percent served, total	94.2%

Key productivity indicators Before and After the program was implemented

IOWA STATE UNIVERSITY College of Veterinary Medicine

management program

Key productivity indicators – data sources

• Parity removal distribution

- Source: Summary of lifetime reproductive performance from the study farm
- Reproductive performance by parity
 - Source: Dhuyvetter, K.C. (2000). What does attrition cost and what is it worth to reduce? In: Proceedings of the 2000 Allen D. Leman Swine Conference, pp. 110-116.
- Growing pig performance by parity of the dam
 - Source: Moore, C. (2001) Segregated production: How far could we go? In: Proceedings of the 2001 Allen D. Leman Swine Conference, pp. 203-206.

Key productivity indicators Before and After the program was implemented

• Parity removal distribution

Source: Summary of lifetime reproductive performance from the study farm

Parity removal distribution Before and After the program was implemented

Labels are percentage of females removed in each parity

Changes in the parity removal distribution shifted the parity structure of the herd to the right

Reproductive performance by parity (Dhuyvetter, 2003)

		Born alive per litter farrowed	Prewean mortality (% pigs	Average weaning weight (Ib)	Average farrow (entry for gilts) to farrow interval	Average farrow (entry for gilts) to removal interval	Average weight of females culled (pounds)	Average cull price (\$/cwt)
	1	9.3	14.0%	11.7	156	55	325	\$37.87
	2	9.5	12.0%	12.5	141	45	380	\$37.87
	3	9.7	13.0%	12.5	147	45	425	\$37.87
	4	9.8	13.8%	12.5	147	45	475	\$40.64
2	5	9.9	14.3%	12.5	146	45	485	\$40.64
arit	6	10.0	14.5%	12.5	145	45	495	\$40.64
Å	7	10.0	14.8%	12.5	142	45	505	\$40.62
	8	10.1	15.0%	12.5	139	45	515	\$40.62
	9	10.1	15.3%	12.5	140	30	525	\$40.62
	10	10.0	15.3%	12.5	135	20	535	\$40.62
	11	10.0	15.3%	12.5	130	15	545	\$40.62

¹Parity of female after litter was farrowed

Growing pig performance by parity of the dam (Moore, 2001)

		Wean-to- finish mortality	Wean-to- finish cull rate	Wean-to- finish average daily gain	Wean-to- finish feed conversion
ity ¹	1	7.34%	3.4%	1.40	2.71
Par	2-11	5.42%	2.5%	1.46	2.60

¹Parity of dam after litter was farrowed

Production and economic model

- Breed-to-wean and wean-to-market production and economic models
- To simulate the profitability under alternative parity removal distributions
 - Populations of females within each parity were sub-modeled separately in the breed-to-wean model
 - Pigs from dams in each parity were sub-modeled separately in the weanto-finish model
- Results from both models were combined to summarize for breedto-market

Screenshot of breed-to-wean model (entire model not shown)

		,											➡
Production Model	Parity	0 Parity 1	Parity 2	Parity 3	Parity 4	Parity 5	Parity 6	Parity 7	Parity 8	Parity 9	Parity 10	Parity 11	Totals
	0	1	2	3	4	5	6	7	8	9	10	11	
Herd Inventory and Turnover													
Breeding Female Inventory													
Average female invento	ory in parity 5	27 351	304	271	240	210	174	138	101	57	24	3	2400
Parity structure	of the herd 2	% 15%	13%	11%	10%	9%	7%	6%	4%	2%	1%	0%	100.0%
Average mated femal Unmated gilts enter Number of females starting par Parity removalmer of females promoted to next par	e inventory 1,8 ed per year 14 ity per year 14 ity per year 10	'3 92 92 1094 94 822	822 725	725 653	653 580	580 508	508 421	421 334	334 247	247 138	138 58	58 0	7070
distribution of females removed in parity (After gilt m	anagement plemented) 26.	7% 18.2%	6.5%	4.9%	4.9%	4.9%	5.8%	5.8%	5.8%	7.3%	5.3%	3.9%	1492
Different Before Number of females remov	ed in parity	98 272	97	73	73	73	87	87	87	109	80	58	1492
and After)	led in parity 37	3.5 258.0	92.1	68.9	68.9	68.9	4.4 82.7	4.4 82.7	4.4 82.7	103.3	4.0 75.8	55.1	1417.5
Breeding, Farrowing and Weaning Performance Annual female replacement / removal rate (%	of breeding herd/year) 62%												
Reproductive	ed per year 1492	0.40	0.00	0.00	0.00	40.04	40.04	40.00	40.05	10.00	40.00		
performance by Pigs born alive/little	an mortality 14.0%	9.49 12.0%	9.68	9.83	9.93 14.3%	10.01	10.04 14.8%	10.06	10.05	10.03	10.03		
parity Pigs born alive per year to femal (Same Before and Pigs weaned per year from femal Pigs weaned per year from femal	les in parity 10119 les in parity 1417 les in parity 8702	7802 936 6784	7020 913 6105	6413 882 5568	5762 821 4993	5079 736 4394	4225 623 3651	3357 504 2897	2479 378 2137	1381 211 1190	582 89 501	0 0 0	54,219 7,509 46.922
After)													

Parameter values that were held constant for both scenarios (all values in US\$)

- Average gestation diet cost = \$186/ton
- Average lactation diet cost = \$222/ton
- Cost of replacement gilt = \$200/gilt
- Market hog price = \$0.65/lb. carcass wt
- Average wean-to-finish diet cost = \$186/ton

Benefit of the gilt management program

- Difference between scenarios (After vs. Before) is benefit of improved sow longevity due to implementation of gilt management program
 - Benefit = Profit After (\$) Profit Before (\$)

<u>Cost</u> of the gilt management program (\$US)

	Matrix®	P.G. 600 ®	Total	
Treatment period (days/unmated gilt)	14	1		
Unmated gilts entered / year	1,492	1,492		
Percentage of unmated gilts treated (%)	100.0%	18.2%		
Product cost of intervention per day (\$/day treated)	\$0.92	\$6.00		
Administration cost of intervention per day (\$/day treated)	\$0.05	\$0.05		
Annual cost of product and labor for administration (\$ / year)	\$20,221	\$1,643	\$21,864	
Labor for boar exposure (hours / gilt entered)	Total an	nual cost	0.25	
Wages and benefits (\$ / hour)	iotai ali of	σilt	\$15.00	
Annual cost of labor for boar exposure (\$ / year)	manac	5m Tomont	\$5,595	
Annual cost of gilt management program (\$ / year)	nanagement		\$27,459	
	pro	grain		

Productivity Before and After breed-to-wean phase of production

	Before	After	Difference
Average breeding female inventory	2400	2400	0
Annual female replacement / removal rate (%			
of breeding herd/year)	62%	52%	-10% 🥌
Replacement gilts entered per year	1492	1248	-244
Average parity of herd	3.08	3.20	0.12
Nonproductive days per female per year	64.1	58.1	-6.0 🥿
Litters farrowed per female per year	2.32	2.36	0.04
Pigs born alive per female per year	22.59	23.01	0.42 🥿
Prewean mortality (% of piglets born alive)	13.85%	13.85%	0.00%
Pigs weaned per year	46922	47803	881 🥿
Pigs weaned per female per year	19.55	19.92	0.37

Productivity Before and After – wean-to-market phase of production

	Before	After	Difference
Wean-to-market mortality (% of pigs placed)	5.78%	5.75%	-0.03%
Wean-to-market average daily gain (pounds/pig marketed/day)	1.439	1.440	0.001 🚩
Wean-to-market feed to gain ratio (pounds of feed/pound of gain)	2.619	2.618	-0.002
Number of finished pigs marketed per year	42,960	43,789	829 🧲
Average live weight at market (pounds/pig)	258.2	258.4	0.2 🧲
Total live weight of pork marketed per year (pounds)	11,092,711	11,315,020	222,310

Benefit – Reduced cost of replacement gilts, net of salvage value (\$US)

	Before	After	Difference
Cost of replacements purchased (\$/year)	\$298,419	\$249,615	
Salvage value of females culled (\$/year)	\$243,117	\$214,771	
Cost of replacements purchased net of			
salvage value of females culled (\$/year)	\$55,301	\$34,844	\$20,457

Benefit – Improved breeding herd productivity (\$US)

	Before	After	Difference
Total annual cost of production(\$/year)	\$1,360,354	\$1,360,124	
Annual revenue from weaned pigs (\$/year)	\$1,407,663	\$1,434,084	
Total annual profit (\$/year)	\$47,309	\$73,961	\$26,652

Benefit – Improved growing pig productivity (\$US)

	Before	After	Difference
Total annual cost of production(\$/year)	\$4,861,720	\$4,953,844	
Total annual revenue from market pigs			
(\$/year)	\$5,549,766	\$5,660,990	
Total annual profit (\$/year)	\$688,046	\$707,145	\$19,099

Benefit – Summary and total (\$US)

•

•

		Benefit
Reduced cost of replacement gilts, net of salv	age value (\$/year)	\$20,457
Improved breeding herd pro	ductivity (\$/year)	\$26,652
Improved growing pig pro	ductivity (\$/year)	\$19,099
	Total (\$/year)	\$66,208
	Total annual <u>bene</u>	<u>efit</u>
\$1.21 / pig marketed	of gilt manageme	ent
\$27.59 / breeding female / year	program	

Return on the investment in the gilt management program to improve sow longevity?

- Benefit:cost ratio was 2.41:1 = \$66,208 / \$35,781
- Return on investment (ROI) was 141% = (\$66,208 \$27,459) / \$27,459

Reminder

- Total annual cost of gilt management program: \$27,459
- Total annual benefit: \$66,208

Key points and caveats

- Parity removal distribution is a useful measure for estimating the value of sow longevity
- Pro-forma estimates of reproductive productivity by parity and growing pig productivity by parity of the dam to isolate value of sow longevity
 - Improvements in productivity not related to sow longevity were ignored in the analysis
 - Benefit:cost ratio and ROI estimated may be higher (lower) if the gilt management program increased (decreased) productivity independent of the parity removal distribution

Key points and caveats

- Time value of money was ignored
- Since some of the benefits were realized after more than one year, discounting the value of those benefits would have been appropriate
 - Would have lowered the benefit:cost ratio and ROI estimated for the program
 - In the current low-interest rate environment and given the benefits would all have been achieved within 3 to 4 years, the results would not have changed substantially

Acknowledgements

- Brad Thacker
 - Merck Animal Health, De Soto, KS USA
- Matt Ackermann
 - Pork Veterinary Solutions, New Palestine, IN USA

Dr. Derald Holtkamp, Associate Professor Iowa State University, College of Veterinary Medicine holtkamp@iastate.edu